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Abstract 

An analytical expression for molecular overlap as a 
function of position is presented; it can be calculated 
by means of Fourier transforms. Overlap functions 
between pairs of symmetry elements can be combined 
to give a crystallographic packing function. Multipli- 
cation of this packing function with the translation 
function increases the significance of the latter, as 
shown for a trigonal test example. 

Introduction 

Patterson-search (Hoppe, 1957a, b; Nordman & 
Nakatsu, 1963; Huber, 1965) or reciprocal-space 
(Rossmann & Blow, 1962; Crowther & Blow, 1967; 
Lattman & Love, 1970; see Rossmann, 1972) 
molecular-replacement techniques are used increas- 
ingly for macromolecular structure solution when a 
partial or similar structure is known. The method is 
carried out in two stages: determination of the model 
orientation in the new crystal (rotation function), 
followed by translation of the rotated model with 
respect to the new cell axes (translation function). It 
is not infrequent that a reasonable solution to the 
rotation function can be obtained with no corre- 
sponding translation vector. Use has been made of 
packing functions in order to discriminate peaks in 
the translation function on the grounds of reasonable 
crystallographic packing. A short summary of avail- 
able packing algorithms has been given by Fitzgerald 
(1990); they operate as follows. 

0108-7673/91/050521-06503.00 

(i) Cohen & Suh (unpublished). The shape of the 
protein is approximated by a number of spheres, from 
which intersphere distances are calculated. 

(ii) Bott & Sarma (1976). A criterion is defined for 
bad contacts; when the number of bad contacts 
exceeds a user-defined number, the translation vector 
t is abandoned. 

(iii) Hendrickson & Ward (1976). The molecular 
shape is defined by a shape function M(r) ,  where 

1 i f r  is intramolecular 
M ( r ) =  0 otherwise. 

The packing function is then calculated using the 
relation 

M ( r ) w  M ( [ R ] r + t )  d3r 
P(t) = j" M(r)  d3r 

where [ R ] denotes a crystallographic rotation matrix 
and t the translation vector. 

(iv) Harada, Lifchitz, Berthou & Jolles (1981). In 
investigating the use of a correlation coefficient to 
determine the translation function, 

s 
F,2,(h) ][ F,.(h, t)]l 2 

h 
~ ( t )  = i /2,  

approximations were made to allow utilization of 
FFT methods, resulting in a function 

~(t) = to(t) /o(t)  
© 1991 Internat ional  Union of  Crysta l lography 



522 AN A N A L Y T I C A L  P A C K I N G  F U N C T I O N  E M P L O Y I N G  F O U R I E R  T R A N S F O R M S  

where TO(t) is a product  t ranslat ion funct ion and 

S 

II F~(h, t)ll ~ 
h 

O ( t )  - s 

N E II Fm(h)ll ~ 
h 

is sensitive to packing. The summat ions  are over the 
reciprocal-space sphere S bounded  by the resolution 
limit of  the observed intensit ies F,2,(h) with Fc(h, t) 
the calculated cell t ransform for a t ranslat ion vector 
t, Fro(h) the molecular  t ransform and N the number  
of  molecules in the unit cell. 

In this paper,  we present  an analytical  form for the 
overlap of  two molecules.  The overlap is seen to be 
a convolut ion and can thus be calculated easily and 
efficiently using Fourier  transforms. A packing func- 
tion is constructed from this overlap, which can be 
used in turn to modify  t ransla t ion-funct ion results. 

The overlap function 

Given two molecular  density functions p~(r) and 
p2(r), the overlap or correlat ion of  the two molecules  
when separated by a vector t may be written 

i/tl2(t)= ~ p~(r)p2(r+t)  d3r. (1) 
c e l l  

This funct ion has a m a x i m u m  value when p, and 
P2 overlap maximal ly ,  and is zero when they do not 
touch. It is recognized as a convolut ion of  p,(r)  and 
p2( - r ) ;  making  use of the convolut ion theorem 

~/-[ ~12(t)] = E l ( h )  F 2 ( h )  (2.) 

where F~ *) denotes (the complex conjugate of) the 
Fourier  t ransform J- of  p~(r). The overlap funct ion 
for the two molecules  as a funct ion of their  relative 
posit ion can therefore be calculated readily through 
Fourier  inversion of  the above product. It is worthy 
of  note that the funct ion 012(t) can be used for the 
t ranslat ion funct ion (see below). 

In particular,  if  two molecules  are related by crys- 
ta l lographic  symmetry,  then 

pl(r)  = p{[ Cj ] ( r +  t) +uj} 

and 

p2(r) = p{[ Ck](r + t) + uk} 

where [ C,] and  u~ are respectively the crystal lographic 
rotation matr ix and the t ranslat ion vector for the ith 
symmetry  e lement  and t is the translat ion vector relat- 
ing the model  to the crystal lographic origin. Substitu- 
tion into (1) then gives the crystal lographic overlap 
funct ion for two symmetry  elements.  

This funct ion is demonst ra ted  for a two- 
d imens iona l  example  in Fig. 1. The 'molecule '  is an 
equilateral  tr iangle of  unit  density, placed in a rec- 
tangular  p m  unit  cell. Even for such a s imple example ,  

the overlap funct ion is not trivial. It exhibits  three 
distinct regions: one l inear  (zero) and two parabolic ,  
of  opposite curvature. The overlap funct ion does not 
obey the target space-group symmetry;  its symmetry  
is in this case p 1. As with the corresponding Patterson 
function,  the overlap funct ion shows a halving of  the 
unit cell, due to alternative choices of  origin. 

Expand ing  (2) using these crystal lographic density 
terms gives the t ransform of  the overlap funct ion as 

J-{ ~jk (t)} = F*(h[  C~] - ' )F(h[  C k ] - ' )  

x exp [2zrih.  (uj --Uk)] 

x e x p { 2 7 r i h ( [ C j ] - [ C k ] ) . t } .  (3) 

This equat ion therefore allows simple calculat ion of  
the crystal lographic overlap for any molecular  form. 

By way of  example,  data from the complex of 
papa in  and  h u m a n  stefin B (Stubbs et al., 1990) are 
used. This structure was solved using Patterson- 
search techniques,  with papa in  (212 residues) as 
search model  (total asymmetr ic  unit 310 residues). 
The space group is P3~21 with a = b = 6 7 . 0 2 ,  c =  
169.34 ,~, a =/3 =90,  y = 120 °. The overlap funct ion 
for a twofold axis is shown for this example  in Fig. 2. 

As already noted for the theoretical example ,  the 
function does not exhibit  the crystal symmetry;  it is 

t / la , lgl¢ ht.lght : 3h; c,.ll ,.d~;o - ,: 

. ,,-~<,'< ~,, (I) 
,~,', ' .,,,~: -~h < ,, < -.~ ( I I )  

- . :~,1(, '~,,)( , ' -h) -~<, '< l ,  ( I I I )  

4 ,~ = 7~/~ c =,o~(~-~I 

~,, (i) (ii)(iii) 

i 

12 
o)2 

'(l)' (ll) '(llll '  

I 

Fig. 1. The overlap function for a simple planar pm unit cell. The 
'molecule' is an equilateral triangle of unit density, with one 
edge parallel to the crystallographic mirror line. Three positions 
for the centre of gravity (c.g., x) of 'molecule 1' are shown 
[(i)-(iii)]; the shaded regions indicate the degree of overlap. 
Although their c.g.s are related by the mirror symmetry, positions 
(ii) and (iii) are dissimilar. The equation for the overlap function 
is given above right; three areas exist [(I), (II), (III)], exemplified 
by sections (i), (ii), (iii) respectively; position (ii) is the transition 
between these regions. The function for translations perpen- 
dicular to the mirror line is sketched lower right. The function 
itself does not possess mirror symmetry, but shows a repeat for 
t and t + a/2, corresponding to equivalent choices of origin. The 
mirror image of the function would be obtained if 'orientation 
2' were placed at 'position 1'. 
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asymmetr ic  because only one orientat ion of  the 
asymmetr ic  molecule is considered.  The funct ion is 
negative for some translat ion vectors. This is a result 
of  terminat ion errors, due to finite resolution limits 
(8-3.5 ~ data). Regions of  overlap with negative 
value may be conferred a degree of significance, 
however. The funct ion changes sign when the two 
molecules touch; one would expect molecules  that 
are 'opt imal ly  packed '  to lie between these points. A 
negative value of  the overlap funct ion could therefore 
be viewed as a measure  of  'better '  packing. Such 
results must be viewed with caution, however,  in 
part icular  if  the search molecule  does not represent 
the whole of  the asymmetr ic  unit. 

Defining the packing function 

The overlap funct ion can be inverted to yield the 
packing funct ion 

C j k ( t )  = 1 --  ~ S k ( t ) / K  (4) 

where the term ,( is a scale factor. For a true analytical  
form of  the packing function,  K = ~b~(0) = j" p2(r) d3r, 
the overlap of  the unrotated molecule on itself at zero 
translation. 

In practice, this measure  of  K is so large that the 
packing funct ion has little dynamic  range (values 
between - 9 0  and 100% in our test example) .  A more 
discr iminatory procedure is to equate K with the 
m a x i m u m  value of ~jk(t), al lowing a full dynamic  
range between 0 and 100%. With this choice of  K, the 
funct ion ~jk has zero value for molecules with 
m a x i m u m  overlap, unity for those that touch and 
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greater than unity for 'opt imal ly  packed '  molecules.  
Values of  Csk > 1 can be t runcated to 1, resulting in 
a modif ied packing funct ion ¢;k(t), i.e. giving equal  
probabi l i ty  to all a l lowed regions. An addi t ional  
modif icat ion is to set to zero any values of the packing 
function Cjk < ~:, where ¢ is a selected fraction. 

For a total of  n symmetry  elements,  the combined  
correlation is given by the product  

n ( n - I ) / 2  

• (t) = [-I q~jk (t) (5) 
j > k  

using the same value of  K for each jk. Such a packing 
function is i l lustrated in Fig. 3. Its convoluted form 
is related to the under ly ing  molecular  shape. The 
space avai lable  for the molecule  is seen to be fairly 
large, a l though it should be remembered  that only 
2/3 of the asymmetr ic  unit  was used in the calculation.  
The m a x i m u m  of  the calculated packing funct ion is 
therefore not that of  opt imal  packing for the entire 
asymmetr ic  unit, demonst ra t ing  the possible dangers 
of  using values of  q~ > 1. 

The product  funct ion above indicates the correct 
way of combin ing  packing functions from different 
symmetry elements:  for example ,  if ~jk (tl) ---- 0 at some 
position t~ for the symmetry  pair jk ,  then the combined  
packing funct ion ~ ( t l )  should also take the value 
zero. Similarly,  if q~Sk(tm) = ~: and q~,,(tm) = 1 at some 
position t2 for symmetry pairs jk  and lm respectively, 
their combined  value should be ~:. These identities 
are obta ined with the product  function. Of  course, a 
sum funct ion is easier to evaluate,  in that it requires 
only one t ransform; it does not possess the same 
powers of  d iscr iminat ion however. 

For a direct compar ison  of  the packing funct ion 
derived here with the funct ion O(t) of  Harada,  
Lifchitz, Berthou & Jolles (1981), one can rewrite the 
equat ion as 

~gk(t) 
k :>j 

O(t) = 1 + 
E ,/,;, (o) 
J 

This is therefore a sum of  the independent  overlaps, 
with extreme values of  1 (no overlap) and 2 (full 
overlap). As indicated by our example  above, use of  
the scale factor K = ~ ( 0 )  would result in a m a x i m u m  
value of O(t) far less than 2. An increase in sensitivity 
in this funct ion could be gained by al lowing optimiz- 
ation of K. 

d i s t a n c e  in y f rom twofo ld  ax is  

Fig. 2. The correlation function for the twofold axis on the plane 
z = 0. Coordinates are in grid units from the twofold axis in the 
y direction (unit cell 70 grid points in y). A B factor of 102 has 
been applied. Inset: regions of 4% -< 0 (shaded) on plane z = 0 
for the two filled positions. The asymmetry of the shaded regions 
about the diagonal diad reflects the molecular asymmetry. 

Modification of the translation function 

The packing function (/)(t) can be used to modify  a 
previously obta ined translat ion function T(t) through 
s imple point-by-point  mult ipl icat ion:  

Ta'(t) = T(t) q0(t). (6) 
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We have used a version of the translation function 
of Crowther & Blow (1967) which calculates a direct 
vector in the target unit cell instead of cross vectors 
(see Appendix). Table 1 gives an analysis of modified 

translation functions using the packing function and 
its truncated forms. It is quite clear that the modified 
functions enhance peak discrimination. The signal-to- 
noise ratio (defined as the ratio of signal peak height 
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Fig. 3. (a)  The packing function for papain in papain-stefin B complex crystals. A stereoplot is given for grid layers 55-65 in the 
direction of  y. The single contour delineates regions of  ~ ( t )  > 1. The function shows a halving in the z direction, corresponding to 
equivalent choices of  axes. (b) The three-dimensional translation function for the same region as (a); contour levels start at 9 ~  above 
mean and are incremented in steps of  2tr. The highest peak in the translation function is at (22.2, 58.1, 41.6) (arrowed; see Table 
1). (c) Superposition of  (a)  and (b); the highest peak is well within the allowed packing region. (d) C~ plot of  papain, showing the 
unit cell built using this vector (arrow shows position of  centre of  gravity); it is the correct solution of  the structure. 
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Table 1. Comparison of the translation function T(t), the modified translation function T*(t )  and the truncated 
translation functions T~'(t), T~'>¢(t), T¢">~(t), as described in the text 

The  t r igona l  gr id  has  un i t s  o f  70, 70 a n d  200 in x, y a n d  z respec t ive ly ;  on ly  one  ha l f  o f  the un i t  cell in the z d i r e c t i on  is g iven  
( e q u i v a l e n t  o r ig ins  for  the t r a n s l a t i o n  f u n c t i o n ) .  Peak he ights  are g iven  as un i t s  o f  ~r a bove  me a n .  T( t )  is c a l c u l a t e d  by  m e a n s  of  a 
f u l l - s y m m e t r y  t r a n s l a t i o n  f u n c t i o n  wr i t t en  by  one  of  us ( M T S ) ;  such  a f u n c t i o n  has p rev ious ly  b e e n  de sc r i be d  by Rius  & Mirav i t i l e s  
(1986). Peak 1 is the correct  p o s i t i o n  of  the m o l e c u l e  in the  u n i t  cell. 

T ( t )  T ° ( t )  T ° ' ( t )  T ° > ° 9 ( t )  T ° ' ' ° ' 9 ( t )  

cr = 5"73, cr = 5-81, cr = 4-97, or = 5"34, cr = 3"99, 

m e a n  = 0.00 m e a n  = 0.05 m e a n  = 0.02 m e a n  = 0-09 m e a n  -- 0-06 
Peak He igh t  t (gr id)  He igh t  Or ig ina l  He igh t  Or ig ina l  He igh t  Or ig ina l  Height  O r i g i n a l  
r ank  or x y z o- r ank  ~ r ank  ~r r ank  cr r ank  

I 19. I 22-2 58-1 41.6 23.9 I 21-6 1 26-0 1 25.4 I 
2 11-0 22.1 58-1 73-0 11.7 6 I 1.5 4 12.7 6 14.3 4 
3 10-1 22.2 58.1 81.0 11.4 7 I 1-4 3 12-4 7 14.2 3 
4 10.0 22.1 58.2 93-1 1 I. 1 9 ! 1.4 5 12.0 9 14-1 5 
5 9.93 22.2 58-1 96-2 1 I-1 14 11.2 7 12-0 14 13-9 7 
6 9.82 22.2 58-1 44.9 11-0 3 I 1.0 6 11.9 3 13.7 6 
7 9.77 22.1 58. I 33.8 10.9 17 11.0 8 11.9 17 13.6 8 
8 9.68 22-1 58.1 50.0 10.9 4 10.9 13 11-8 4 13.5 13 
9 9.58 45.6 34.9 57. I 10-8 26 10.9 14 11.8 26 13.5 14 

10 9.53 22-1 58-1 76.1 10.8 5 10.8 12 11.7 5 13.5 12 

to that of the highest noise peak) for the various 
functions is as follows: 

2-05[ T't '>°'9(t)] > 2.04[ T't '(t)] > 1.88[ Ta"(t)] 

> 1.78[ T~">° 9(t)] > 1.74[ T(t)]. 

The 'unprimed'  functions, however, give greater 
weights to 'better packed' noise peaks. Although the 
original solution is in this case unambiguous, it is 
obvious that the effective decrease in noise would be 
valuable in cases that are not so clear cut. 

The use of a product is not the only method for 
combining packing and translation-function terms. 
As cited in the Introduction, Harada, Lifchitz, Berthou 
& Jolles (1981) employ a quotient. This leaves transla- 
tion-function-solution peaks that exhibit no overlap 
unmodified and halves those showing maximum over- 
lap. It has already been pointed out that this 
maximum overlap may not be achieved in practice 
so that badly packed solutions of the translation 
function might not be sufficiently downweighted. The 
present formulation leaves unmodified (or even 
accentuates) solutions representing good packing, 
with the important advantage of eliminating totally 
those that would give rise to bad contacts. 

It was previously noted that the terms necessary to 
calculate qJ~k(t) are the same as those for the transla- 
tion function: in fact, the translation function of 
Crowther & Blow (1967) can be written 

Tjk (t) = j" Pob~(U)$jk(U +t )  d3u (7) 

J-[ Tjk(t)] = lob~(h)F~(h)Fk(h). (8) 

One could therefore modify the translation func- 
tion by subtraction of the overlap: 

Tjak(t)=J[Pobs(U)--k]~bjk(u+t)d3u (9) 

3-[r~(t)]=[lob~(h)-k]F*(h)Fk(h) (I0) 

where k is a scaling constant. Such a modified transla- 
tion function has the advantage of more straight- 
forward calculation" it requires only one transform, 
with no resultant multiplication. Trial calculations 
using various scaling constants k failed to produce 
significant differentiation between signal and back- 
ground peaks. This may well be due to a problem of 
scaling between observed and model data. The 
observed data were scaled to the calculated data as 
follows 

E F~(h) 
I sca|edCh~ = F~(h) ob~ ,.., [lobs(h)--(lob.~(h))] h 

Y. Io~(h) 
h 

where subtraction of the average intensity corre- 
sponds to origin removal in Patterson space, whilst 
the final term represents removal of the self-vector 
set, as in the translation function Tl(t) of Crowther 
& Blow (1967). It has been pointed out (Harada, 
Lifchitz, Berthou & Jolles, 1981; Fujinaga & Read, 
1987) that translation-function results may be 
enhanced significantly by using normalized E(h)s as 
opposed to F(h)s; we have not tested this, however. 

Use of the packing function can help remove peaks 
that lead to particularly bad contacts, thereby increas- 
ing the significance of correct translation-function 
peaks. It may also find use in the case of docking or 
molecular-dynamics calculations. 

APPENDIX 

The programs which were used for the given 
example are described here. Equation (3) can be 
written 

J{~bjk(t)}= Aik exp{2r r ih ( [G] - - [Ck] ) . t }  (A1) 
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where 

Ask = F*(h[ q ] - ' ) F ( h [  Ck] -~) 

x exp [2~'ih. (u s --Uk)]. (A2) 

Equation (A1) can be transformed either with 
respect to the reciprocal-space vectors h, resulting in 
a transform with vectors ([ C s ] - [ Ck ])t, or with respect 
to the reciprocal-space cross vectors h([Cs]-[Ck]), 
giving rise to a transform with vectors t. The main 
advantage of the latter lies in the ease of combination 
of different symmetry elements. A Fourier synthesis 
with modified coefficients of this sort has been 
described previously by Rius & Miravitlles (1986). 

The translation and packing functions are calcu- 
lated as follows. 

(i) Structure factors are calculated for the correctly 
oriented molecule, placed in a triclinic unit cell of 
identical lattice constants as the target cell; this avoids 
interpolation in the ensuing steps. 

(ii) The structure factors are sorted according to 
resolution such that symmetry-related reflections are 
grouped together. 

(iii) For a given vector b in the asymmetric unit, 
the structure factors are found for all symmetry- 
related vectors h[Cs] -I. The complex coefficients (A2) 
are evaluated for each symmetry element [using (3) 
and (8) for the packing and translation functions 
respectively] and assigned to cross vectors b([C s ] -  
[ck]). 

(iv) The resulting difference vector coefficients are 
added together (from all symmetry elements for the 
translation function, pairwise for the overlap func- 
tion) and Fourier transformed. The packing-function 
coefficients must be weighted by an artificial B factor 
to dampen spurious ripples, resulting in a smooth 

function (see Fig. 2); this is necessary for the combi- 
nation with the translation function as outlined in (6). 

(v) The packing function is evaluated according 
to (4) and (5), using an appropriate value for K. 

(vi) Modified translation functions are calculated 
according to (6). 

The current translation-function package requires 
- 4  min CPU on a VAX 8550 from atomic coordinates 
to translation function for the example given here 
(29 823 structure factors between 8 and 3-5/~, 6 sym- 
metry operations); the packing function currently 
takes <20 min CPU for the same problem (15 cross 
vectors), although the use of external programs, with 
consequent multiple file conversions, represents a 
considerable fraction of retrievable computation time. 

Programs for the packing and translation functions 
described here are available on request. 
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Abstract 

Since Sayre's equation is the basis of some direct- 
methods procedures, the applicability of Sayre's 
equation has been tested in various circumstances. 
When a structure contains a heavy atom, it is found 
that Sayre's equation does not hold well, which is 
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expected since the condition of equal resolved atoms 
does not apply. However, what is not expected is that 
with a heavy atom present the equation actually holds 
better at low resolution than at high resolution. The 
cause of this apparent anomaly is discussed and it is 
shown that there exists a modified Sayre's equation 
which holds far better in the presence of one kind of 
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